Welcome

Environmental Advisory Board (EAB) Meeting

Robins Air Force Base November 3, 2022

Welcome and Program Introduction

Dr. Linda Smyth
EAB Community Co-chair

Acronyms and Abbreviations

- AEHS Association of Environmental Health and Sciences
- AO Alternate Objective
- API American Petroleum Institute
- ASC Advanced Site Characterization
- ASTM American Society for Testing and Materials
- BTEX Benzene, Toluene, Ethylbenzene, Xylene
- CLU-IN Contaminated Site Clean-Up Information
- CSM Conceptual Site Model
- cVOC Chlorinated Volatile Organic Compound
- DNAPL Dense Non-Aqueous Phase Liquid
- FID Flame Ionization Detector
- ft/day feet per day

Acronyms and Abbreviations

- GW Groundwater
- HPT Hydraulic Profiling Tool
- HRSC High Resolution Site Characterization
- ITRC Interstate Technology Regulatory Council
- LNAPL Light Non-Aqueous Phase Liquid
- mg/cu. ft milligram per cubic feet
- mg/kg milligram per kilogram
- mg/L milligram per liter
- MGP Manufactured Gas Plant
- MiHpt Membrane Interface Probe with Hydraulic Profiling Tool
- MIP Membrane Interface Probe
- mL/min milliliter per minute
- mV millivolts

Acronyms and Abbreviations

- NAPL Non-Aqueous Phase Liquid
- NGWA National Ground Water Association
- OIP Optical Interface Probe
- PID Photoionization Detector
- ppm parts per million
- psi pounds per square inch
- SURF Sustainable Remediation Forum
- TPH Total Petroleum Hydrocarbon
- USEPA United States Environmental Protection Agency
- UV Ultraviolet
- VOC Volatile Organic Compounds
- XSD Halogen Specific Detector

Environmental Advisory Board

Complex Sites: The Role of High Resolution Site
Characterization
(Briefing and Demonstration)

John Sohl, CEO Columbia Technologies

November 3, 2022

Overview

- Alternative Objective (AO) Sites
- Columbia Briefing
- **Equipment Demonstration**

- Sites with "complex attributes that have, to date, inhibited progress toward the achievement of RC [Response Complete]."
- AO sites generally have an incomplete conceptual site model (CSM) and are expected to require longer than 30 years to achieve Response Complete under current remedial approach

Path Forward for AO Sites

- Advanced Site Characterization (ASC)/High Resolution Site Characterization (HRSC)
 - SSI
 - Revised CSM
 - Updated groundwater monitoring program
- Remedy Evaluation and Recommendation
 - Pilot Studies/Treatability Tests, as applicable
- Decision Document amendment, as applicable
- Remedial system operation
- Annual groundwater sampling

Implementation of these tasks will be based on outcome of the site investigations

(millimeters per minute, mL/min)

200 240

100

HPT Flow Avg (mL/min)

- DC034 (Solid Waste Management Unit [SWMU] 36) (Horse Pasture)
- OT017 (SWMU 17)
- OT020 (SWMU 20)
- OT041 (SWMU 57)
- **SS040 (SWMU 10B)**

Complex Sites: The Role of High Resolution Site Characterization

John Sohl CEO

Certified Sustainability Practitioner

Our Sustainable Purpose

Environment Economic Social

Chemical Hydrological Geochemical Microbiological

U.S. Industry Resources

American Petroleum Institute (API)

Contaminated Site Clean-Up Information (CLU-IN)

American Society for Testing and Materials (ASTM)

Interstate Technology
Regulatory Council (ITRC)

Association for Environmental Health and Sciences (AEHS)

National Ground Water Association (NGWA)

United States Environmental Protection Agency (USEPA)

Cost Curve is Unsustainable

High-Resolution SmartData Approach

WHY HIGH RESOLUTION?

Where we were 10 years ago...

Impact on Conceptual Site Models

1 ft/day

20

Geologic X-Section: Setting the Stage for a DNAPL Release

Key Point: Groundwater flux is dominant in high-permeability zones

Groundwater velocity in high-permeability zones >>> average value

Highly simplified illustration of heterogeneous geology

Remediation Targets the Soil Mass

Soil and Ground Water Contamination (ppm)

Contaminant Load mg / 100 cu. ft.

Multiple Lines of Evidence

Focus on Clarity in 3D

HIGH-RESOLUTION DIRECT SENSING TECHNOLOGIES

Direct Push Technologies

SOIL PERMEABILITY

Hydraulic Profiling Tool (HPT) to Measure Soil Pore Pressure

CHEMICAL DETECTION

Textbook Contamination Release

What is NAPL?

NAPL

NonAqueous Phase Liquid – a separate or "free" phase liquid; not in solution

LNAPL

A liquid *that is less dense than water*Common examples of LNAPL include gasoline, diesel fuel, jet fuel, and crude oil
Can also include multi-component mixtures

Can be *unconfined or confined by groundwater*

OIP Description

- OIP Probe: Robust with simple connection to the trunkline.
- Driveable: Using 7822 series machines and drive cushions.
- Compatible: With Geoprobe 1.5 inch and 1.75 inch rod systems.

Optical Interface Probe Fluorescence Mapping of Petroleum

Membrane Interface Probe

Membrane Interface Probe

Principles of Operations (MIP)

Quick Notes:

- Volatile Organic Compounds (VOCs)
- Typical Detection Limits:
 - 1 ppm petroleum fuels
 - 200 ppb chlorinated solvents
 - 10X Lower for Low-Level MIP
- Integrated Hydraulic Profiling Tool

Performance Test Required!

Benefits of High-Resolution Information

- Identified solvent contamination at discrete subsurface elevations
- Hydraulic pressure and flow vs. depth
- Estimated hydraulic conductivity
- Soil particle size

Example direct sensing boring log

(April 2016)

Scientific Basis for Lines of Evidence

0.10 1.00 10.00
TEST CONCENTRATION (PPM)

Membrane Interface Probe (MIP)

Chlorinated Volatile Organic Compounds

Membrane Interface Probe (MIP)

Petroleum
Volatile Organic
Compounds

Flame Ionization Detector

Photo Ionization Detector

Halogen Specific Detector

Combined Membrane Interface Probe and Hydraulic Profiling Tool (MiHpt)

Photo Ionization Detector

Halogen Specific Detector

Performance Testing Required!

ASTM Standard
D7352 Standard Practice for the Membrane Interface
Probe (MIP) for Volatile Contaminant
Logging using Direct Push Methods

GROUNDWATER DISSOLVED PHASE CONTAMINATION

Mass FLUX Diagram

Mass vs Flow

DATA INTERPRETATION

Real-Time SmartData Solutions®

Key Takeaway Points

- High-resolution Scale appropriate information is critical to minimizing uncertainty in Site Conceptual Model
- Remediation parameters are not the same as risk parameters (e.g., BTEX in water does not represent TPH mass in soil)
- Multiple lines of evidence are required One technology or approach will not provide all the answers needed for remedial design selection

Think. Restore, Sustainably

John Sohl, President/CEO jsohl@columbiatechnologies.com +1-301-455-7644

Equipment Demonstration

Questions?

New Business and Program Closing

Dr. Linda Smyth
EAB Community Co-chair

Next EAB Meeting

Thursday, February 2, 2023

Please...

Complete the meeting evaluation and feedback form and return to sign-in table or leave at seat

Leave your name tag at the sign-in table or seat for the next meeting

Thank you!